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We study the Laplacian operator of an uncorrelated random network and, as an application, consider hopping
processes �diffusion, random walks, signal propagation, etc.� on networks. We develop a strict approach to
these problems. We derive an exact closed set of integral equations, which provide the averages of the
Laplacian operator’s resolvent. This enables us to describe the propagation of a signal and random walks on the
network. We show that the determining parameter in this problem is the minimum degree qm of vertices in the
network and that the high-degree part of the degree distribution is not that essential. The position of the lower
edge of the Laplacian spectrum �c appears to be the same as in the regular Bethe lattice with the coordination
number qm. Namely, �c�0 if qm�2, and �c=0 if qm�2. In both of these cases the density of eigenvalues
����→0 as �→�c+0, but the limiting behaviors near �c are very different. In terms of a distance from a
starting vertex, the hopping propagator is a steady moving Gaussian, broadening with time. This picture
qualitatively coincides with that for a regular Bethe lattice. Our analytical results include the spectral density
���� near �c and the long-time asymptotics of the autocorrelator and the propagator.
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I. INTRODUCTION

The Laplacian spectra of random networks determine a
wide circle of processes taking place on these networks, see,
e.g., �1–10� and references therein. Random walks, signal
propagation, synchronization, and many others are among
these processes. This is why the problem of Laplacian spec-
tra of random networks �especially, of its low-eigenvalue
part which determines the long-time behavior of relevant
processes� is considered as one of the central problems of
graph theory and the science of complex networks. In this
paper we essentially resolve this problem applying the strict
statistical mechanics approach to sparse uncorrelated random
networks with arbitrary degree distributions. These random
graphs constitute a basic class of complex networks.

One should note that leading contributions to the spectra
and the asymptotics of the random walk autocorrelator were
found by Bray and Rodgers in 1988 in the particular case of
the Erdős-Rényi graphs �3�. It is important that these classi-
cal graphs necessarily have dead ends and vertices with two
connections. We will show that the absence of these vertices
in a network qualitatively changes the spectra and the ran-
dom walk asymptotics. Random walks on hierarchically or-
ganized, deterministic, scale-free graphs were studied by
Noh and Rieger in Ref. �11�. Due to a very specific organi-
zation of these graphs, their results are not applicable to
equilibrium networks. This is also the case in respect of the
recent numerical work of Kujawski, Tadić, and Rodgers �2�,
who found the autocorrelator of a random walk on a grown
scale-free network by performing extensive numerical simu-
lations. Their network was strongly correlated in contrast to

the configuration model of a random graph, which we use in
this work. For an arbitrary network, Noh and Rieger in Ref.
�12� found a mean first passage time and an average return
time, which are rather integrated characteristics. �According
to the Kac formula �13�, the mean return time for a vertex
coincides with the inverse probability to find the particle at
this vertex in the final equilibrium state of the process, after
complete relaxation.� Kim and Kahng, Ref. �8�, described the
Laplacian spectrum of the static model of an uncorrelated
complex network in the more simple case of high density of
connections �high mean degrees�.

For the sake of clearness, let us remind the reader of basic
notions and terms for random networks. For more detail see
�14–20�. A graph is completely defined by its N�N adja-
cency matrix Â, whose elements Aij are the numbers of edges
between i and j. The vertex degree of vertex i is the number
of edges, attached to this vertex, qi=� j=1

N Aij =� j=1
N Aji. In ran-

dom networks, qi is a random variable with a degree distri-
bution ��q�= ���q−qi��.

In traditional mathematical models, ��q� is a rapidly de-
caying function with a well-defined scale. For example, in
the Erdős-Rényi model �21�, which is a standard one, ��q� is
a Poisson distribution decaying as �q̄ /eq�q, i.e., faster than
any exponent. In contrast to these models, in most of the
real-world networks degree distributions are heavy tailed.
After the work �22�, they are usually approximated by a
power law �q−	 in the range of sufficiently high degrees.
Note that the validity of this fitting is limited because real-
world networks are small �even the WWW has only about
1010 vertices�, and so high degrees are not observable. It is
commonly believed that the “scale-free networks” are greatly
distinguished from the others in every aspect. This wide-
spread belief actually implies a division of all networks into
two classes: “scale-free networks” and all others. In contrast
to these beliefs, we here show that scale-free �or, more gen-
erally, heavy tailed� architectures of networks are not essen-
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tial for a lower edge of the Laplacian spectra and the long-
time behavior of random walks characteristics. The resulting
dependences are determined by the minimum degree of ver-
tices in a network. Heavy tails determine some coefficients
and amplitudes but not a type of these singularities.

In this paper we study properties of the Laplacian opera-
tor

Lij = qi�ij − Aij �1�

on an uncorrelated random network near the lower edge of
its spectrum, and, respectively, the hopping motion of some
carrier �“signal”� from one vertex to another at large times.
This operator corresponds to the process described by the
following dynamic equations for the probability pij�t� that at
time t a particle is at vertex i if at time 0 it was at vertex j,

ṗij�t� = �
k=1

N

Aikpkj�t� − qipij�t�, pij�0� = �ij . �2�

This is a random walk where the rate of hopping along any
edge is set to one. Other versions of the Laplace operator and
corresponding processes, which are also widely discussed in
literature, are listed in Appendix A.

We use the configuration model of an uncorrelated net-
work �23,24�, which is a maximally random network with a
given degree distribution. It is convenient that �i� this model
is statistically homogeneous, �ii� all its vertices are statisti-
cally independent, and �iii� it has a locally treelike structure.
We consider only infinite networks, that is, first we tend the
total number of vertices N to infinity �the thermodynamic
limit� and only afterwards study network characteristics. If,
say, we study a random walk, then a particle should be still
much closer to an initial vertex than the diameter of the
network �ln N. In other words, we consider the process at so
short times that the number of vertices, where the walking
particle may be found, is negligible compared with the net-
work’s size N. We will see that this imposes strong limita-

tions to the applicability of our results due to the “small
world” feature of the networks under consideration.

We will show that for the Laplacian spectra and for ran-
dom walks, the crucial property of the random uncorrelated
network is the minimum degree qm of its vertices. We sup-
pose that the value of the degree distribution at qm essentially
differs from 0 and 1. We also assume that qm�0, because the
contribution of isolated vertices is trivial. Our results are
summarized in Table I and in Fig. 1. Note an unusual singu-
larity of the spectral density in the case qm�2.

As is natural, the calculation of the spectrum is reduced to
the study of the trace of the Laplace operator’s resolvent. To
describe the propagation of the signal in the network, one
must know the nondiagonal elements of the resolvent. Here
we calculate the asymptotics of their average values. It al-
lows us to obtain the time and distance dependences of the
signal’s propagator p̄ij�t�= p̄l�t� when the distance between

TABLE I. Asymptotics of the Laplacian spectral density ����, autocorrelator P̄0�t� and propagator P̄l�t�
for the random uncorrelated networks where ��qm� is essentially distinct from 0 and 1. Here pl

�eq�= Pl�t
→
� are stationary values of the correlator given by Eq. �38� for l=0 and Eq. �45� otherwise, �=��qm

−1�1/4 ln�qm−1�. The values of the parameters in the preexponential factors are =9 /10 and 4 /3, �
=−7 /30 and 1/18, and �=13 /30 and 5/18 for qm=1 and 2, respectively. v and D are determined by the full
form of the degree distribution ��q�.

Minimum vertex degree qm�2 Minimum vertex degree qm=1 or 2

Spectral edge qm−2	qm−1 0

�c

Spectral exp�� / 2	�−�c −d exp�� / 	�−�c ��, p0
�eq�����+const �− exp�−a /	��,

density Eq. �55� Eqs. �64� and �76�
Autocorrelator exp�−�ct−�2t / ln2 t�, Eq. �56� p0

�eq�+const t� exp�−3�a / 2 �2/3t1/3�,
Eqs. �65� and �77�

Propagator at 1 / 	2�Dtexp�− �l−vt�2 / 2Dt�, 1 / 	2�Dtexp�− �l−vt�2 / 2Dt�,

l� t Eq. �62� Eqs. �62� and �79�
Propagator at �0

l �−�c�exp�−�ct−�2t / ln2 t� pl
�eq�+ct−� exp�−3�a / 2 �2/3�t− l /v�1/3�,

t→
 Eqs. �70� and �80�

λ

ρ(λ)

λc0

m

m

m

q = 1

q = 2

q > 2
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FIG. 1. Laplacian spectral density ���� for networks with dif-
ferent minimum vertex degree qm �solid lines�: �a� qm=1, �b� qm

=2, and �c� qm�2. The dashed lines show ���� for an infinite chain
�b� and for the Bethe lattice with the coordination number qm�2
�c�. The vertical line at �=0 represents a �-function peak.
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initial i and final j vertices, l, is much smaller than the di-

ameter of the network, l̄� ln N.
Why is the minimum vertex degree so important in these

problems? Note that in respect of random walks and Laplac-
ian operator related problems, infinite uncorrelated networks
are equivalent to infinite Bethe lattices with coinciding de-
gree distributions. �Recall that a Bethe lattice is an infinite
tree without borders.� Let us compare two Bethe lattices—
random, with the minimum coordination number qm, and
regular, with the coordination number equal to qm. It is clear
that the autocorrelator in the random Bethe lattice cannot
decay slower than in the regular Bethe lattice with this qm. If
qm�2, then in this regular Bethe lattice, p̄ii�t�= p̄0�t�
� t−3/2 exp�−�ct�, where

�c = qm − 2	qm − 1. �3�

�c is also the spectral boundary in the Laplacian eigenvalue
density ���� of this regular Bethe lattice, where ����
�	�−�c, near �c. �For the calculation of the autocorrelator
and Laplacian spectrum of a regular Bethe lattice see, e.g.,
Refs. �25–27�. The work �27� describes details of these cal-
culations based on the application of the generating function
approach to Eq. �2� for a regular, homogeneous case.� Thus,
the spectral boundary for an infinite uncorrelated network in
principle cannot be lower than that for the regular Bethe
lattice with the same qm. Moreover, these borders coincide.
The reason for this is the following feature of the configura-
tion model of an uncorrelated network. Let the number of
vertices N in this model approach infinity. Then the mean
number of given finite regular subgraphs with coordination
number qm grows proportionally to N. We stress that al-
though this number rapidly decreases with a size of these
subgraphs, it is proportional to N for any given subgraph
size. In the arbitrarily large subgraphs, the lowest eigenval-
ues are arbitrarily close to the spectral boundary of the cor-
responding regular Bethe lattice. The number of these eigen-
values is proportional to the number of these subgraphs and
so proportional to N. Now recall that the total number of
eigenvalues in the spectrum is N. Therefore, indeed, the
spectral borders for the configuration model and for the regu-
lar Bethe lattice with qm coincide.

The statistics of these regular tree subgraphs determine
the singularity of the resulting ���� at the edge �c. The rapid
decrease of the number of these subgraphs with their size
results in specific singularities, with all derivatives zero, rep-
resented in Table I.

The random networks with qm=1,2 markedly differ from
those with qm�2. In the configuration model with qm=1,2,
chains and chainlike subgraphs are statistically essential. Let
us first discuss the case qm=2. The Bethe lattice with coor-
dination number 2 is a usual infinite chain. It has the spectral
boundary �c=0. Near this edge, ������−1/2. Thus, the edge
of the spectrum of the uncorrelated network with qm=2 is
zero. We will show that the statistics of chain subgraphs in
this configuration model differ from those for the case qm
�2. This results in different asymptotics presented in Table I
and, schematically, in Fig. 1.

If qm=1, chainlike subgraphs are also present in the con-
figuration model. There are, however, more chains �see Fig.
2� with branches attached. Nonetheless, these subgraphs re-
sult in the spectrum edge �c=0 and in the same asymptotics
as for qm=2. When qm=1, numerous finite components are
present in the network. Their mean number is proportional to
N. Each of the connected components gives one zero eigen-
value in the spectrum. This leads to a �-function peak at �
=0 in the spectral density.

The obtained singularities of ����, with all derivatives
zero, have a direct consequence for observations in finite
networks. The approach of �2�N�, the minimal nonzero ei-
genvalue, to �c is extremely slow. Even in a huge uncorre-
lated network, the observed minimum eigenvalue �2 will be
far from the spectral edge �c predicted for an infinite net-
work. Note that a very slow convergence of �2 was recently
observed in the numerical work of Kim and Motter �28�, in
which �2 and �c were compared for networks up to 4000
vertices. One should also note that the obtained asymptotics
of the autocorrelator can be observed only in extremely large
networks. We will indicate the range of network sizes, where
our formulas are valid.

In Sec. II we strictly formulate the problem. In Sec. III we
derive a basic set of integral equations. Solving these equa-
tions enables us to obtain the Laplacian spectrum ���� for
uncorrelated random networks and to describe the random
walk on the networks in the thermodynamic limit. In Sec. IV
we study the final value of the propagator p̄i

�eq�= p̄l�t→
�,
which is the equilibrium probability to find a signal at dis-
tance l from a starting vertex. We describe p̄i

�eq� in terms of l
and of the degree distribution ��q�. Furthermore, we find the
coefficient of the ���� term in the Laplacian spectrum. In
Sec. V we present general solutions of the integral equations
of Sec. III and analyze them in three distinct cases, qm�2,
qm=2, and qm=1. In Sec. VI we summarize our results and
methods and discuss conditions for their applicability. Tech-
nical details are given in the Appendixes. In Appendix A we
describe various forms of the Laplacian and corresponding
processes. Appendix B contains necessary information about
the Z-transformation �generating functions� in application to
the statistics of connected components in the configuration
model. In Appendix C we derive our basic relations: �i� Eq.
�19� and equivalent Eq. �C7� and �ii� expression �20� of the
autocorrelator in terms of the solution of Eq. �19� or Eq.
�C7�. In Appendix D we derive linear recursion relation �23�.
In Appendix E we find the asymptotics of the solution of Eq.
�C7� in all three cases, qm�2, qm=2, and qm=1. In Appen-
dix F we obtain the lowest eigenvalue for recursion �23� and
the corresponding eigenfunction.

II. FORMULATION OF THE PROBLEM

The problem of the Laplacian spectrum of a random net-
work is completely equivalent to that of the time dependence

FIG. 2. Chain with finite treelike branches in a random network
with the minimum vertex degree qm=1.
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of the averaged autocorrelator p̄0�t�= �pii�t�� for a random
walk. This autocorrelator is the probability that a particle
returns to the starting vertex after a time t. This quantity is
related to the eigenvalue density

���� =
1

N
�
n=1

N

��� − �n�� �4�

in the following way:

p̄0�t� = �
0




d�e−�t���� , �5�

where �k are �non-negative� eigenvalues of the Laplace op-
erator on the network

L̂a�k� = �ka
�k�, a�k� = �a1

�k�,a2
�k�, . . . ,aN

�k�� , �6�

�L̂x�i = �
j

Aij�xi − xj� = qixi − �
j

Aijxj . �7�

We assume, that a particle moves from vertex to vertex by
hopping along edges. To every edge we ascribe a hopping
rate wij, which is the probability to move from vertex j to
vertex i per unit time. Hopping rates are assumed to be sym-
metric and equal to 1 for every edge, wij =wji=Aij =0 or 1. In
this paper we fix wij but not the escape rate of a particle from
a vertex, see Appendix A where other forms of a Laplace
operator are listed. It turns out that our main conclusions are
also valid if the escape rate from a vertex is fixed. This case
will be discussed in detail in our next works. Assume that at
t=0 the particle is at vertex j. Its motion is governed by the
master equation for the propagator, which is the probability
pij�t� that at time t the particle is at vertex i,

ṗij�t� = �
k=1

N

�wikpkj�t� − wkipij�t�� = �
k=1

N

Aikpkj�t� − qipij�t� .

�8�

This equation is supplied with the initial condition pij�0�
=�ij. What is the value of the probability

p̄n�t� =
1

N
 �
d�i,j�=n

pij�t�� �9�

that at time t the particle is at distance d�i , j�=n from a
starting vertex? �The distance is the minimum shortest path
between two vertices.� Here �¯� means the average over
some statistical ensemble of graphs �over that of the configu-
ration model in our case�.

In the Laplace representation,

Pik�s� = �
0




dtpik�t�e−st, �10�

the propagator P̂�s� is the resolvent of the Laplace operator,

P̂�s� = �s + L̂�−1. �11�

�For the sake of clearness we note that Pik�s� is a matrix

element of the operator P̂�s�.� Consequently, the density of

eigenvalues is expressed in terms of the analytic continua-
tions of the averaged values of the autocorrelator

���� =
1

2�i
�P̄0�− � − i0� − P̄0�− � + i0�� , �12�

where P̄0�s�=0

dtp̄0�t�e−st. The inverse relation is

p̄0�t� = �
−i
+�

+i
+� ds

2�i
estP̄0�s� = �

0




d�e−�t���� . �13�

III. MAIN EQUATIONS

We assume the thermodynamic limit, N→
, and the frac-
tion of vertices with a degree q, N�q� /N→��q�. Here ��q�
is a given degree distribution with a finite second moment,
�qq2��q��
. In this limit, almost all finite subgraphs are
trees, i.e., they have no closed loops within. The network is
uncorrelated, i.e., degrees of any pair of vertices, connected
or not, are independently distributed random variables. These
features allowed us to describe the statistics of intervertex
distances �29�. The problem under consideration is actually
related to that work.

The equation for the resolvent of the Laplace operator
�11� is

sPik = �ik + �
j

Aij�Pjk − Pik� = �ik + �
j

AijPjk − qiPik.

�14�

Without lack of generality we choose the initial vertex k=0.
By definition, the nth connected component of a vertex i

is a subgraph, containing all vertices j within the distance
d�i , j��n from the vertex i. For any finite n, in an infinite
graph almost any nth connected component of vertex 0 is a
tree. Actually, we analyze a random Bethe lattice. Degrees of
its vertices are independent random variables. Its arbitrary
chosen central vertex has the vertex distribution function
��q�= ���q0−q��. The other vertices have degree distribu-
tions equal among themselves but different from ��q�. Non-
central vertex i of a degree qi has one edge directed to the
central vertex and bi=qi−1�0 edges directed from it. Here
b is the branching number of the vertex. Its distribution is
given by

�1�b� =
1

2L
�
i,j=1

N

�Aij��bj − b�� =
�b + 1�

q̄
��b + 1� , �15�

where q̄=2L /N,

L =
1

2 �
i,j=1

N

Aij =
1

2�
i=1

N

qi �16�

is the total number of edges in the graph. In Eq. �15� we
assume that N→
, L→
, but 2L /N→ q̄=�qq��q�, where q̄
is some finite number. �1�b� is the probability that a ran-
domly chosen end vertex of a randomly chosen edge in the
graph has b=q−1 edges apart from the chosen edge itself. It
is convenient to use distributions � and �1 in Z representa-
tion �see Appendix B�.
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Let �n , i� and �n+1, j� be two vertices connected by an
edge and at the distances n and n+1, respectively, from the
starting vertex 0. We introduce the following random vari-
able �see Fig. 3�:

�n,ij�s� =
Pn,i�s� − Pn+1,j�s�

Pn,i�s�
. �17�

It is obvious that the statistical properties of this variable are
independent of the particular choice of vertex i in the nth
shell of the initial vertex 0. The graph ensemble under con-
sideration is completely defined by the degree distribution.
All graphs with a given degree distribution have the same
statistical weights. This, in particular, implies the statistical
homogeneity of the ensemble. First, we randomly choose
vertex 0. Second, we label all other vertices by two indices:
The first one is the distance from vertex 0 �the shell’s num-
ber�, and the second index labels vertices within the shell.
Third, we consider Pni, which is the matrix element of the
resolvent for the pair—vertex 0 and vertex i at distance n
from vertex 0. It is a fluctuating random variable but its
statistical properties are independent of the choice of i, be-
cause every averaging includes averaging over all vertices in
shell n. The other fluctuating quantity in Eq. �17�, Pn+1,j, is,
of course, correlated with Pn,i. Nonetheless, due to the sta-
tistical independence of the vertices, this correlation is inde-
pendent of the particular choice of the connected pair of
vertices. Therefore, we can define the distribution function of
�n,ij, which is independent of i , j. In the Laplace representa-
tion this distribution is defined as

Tn�s,x� = �exp�− x�n,ij�s��� . �18�

Now let us recall that in the infinite network all finite con-
nected components are trees. Moreover, in the thermody-
namic limit the statistical properties of all � variables are the
same, i.e., they are independent of n too �see more detailed
discussion in Appendix C�. It implies the following impor-
tant consequences. �i� In the thermodynamic limit, i.e., for an
infinite network, Tn�T is independent of n. �ii� It is possible
to obtain the closed equation for T�s ,x�. �iii� The density of
eigenvalues ����, and, consequently, the autocorrelator p̄0�t�
can be expressed in terms of T�s ,x� �see Appendix C�.

Equation for T�s ,x� may be written as

exT�s,x� = 1 + 	x�
0


 dy
	y

I1�2	xy�e−�1+s�x�1�T�s,y�� �19�

�see Appendix C�, where I1 is a modified Bessel function,
and �1�z� is the distribution of noncentral vertices branching
numbers in Z-representation �see Appendix B�. As Re s�0,
this function has a solution with all properties of the Laplace
transform of the distribution density of a non-negative ran-
dom variable. This statement may be proved by using an
approach of Ref. �30�.

The function �1�z� has the following properties: �i�
�1�0�=�1�1�, which is the concentration of vertices with
degree 1 �“dead ends”�, and �ii� if the degree distribution
�1�q� decays slower than any exponent for q→
, then z
=1 is a point of singularity of �1�z�. The function �1�z� in
the complex plane is analytic within the circle �z��1,
�1�1�=1. The parameter �1�0� is the crucial one in the divi-
sion of the graph into connected components, see Appendix

B. We show in Appendix B that the autocorrelator P̄0�s� in
the Laplace representation is given by

P̄0�s� = �
0




dxe−sx��T�s,x�� , �20�

where ��z� is the Z-transformation of the degree distribution
��q�. The functions � and �1 are connected as �1�z�
=���z� /���1�, so that ��1�=�1�1�=1. The density of eigen-
values ���� and time-dependent autocorrelator p̄0�t� can be
obtained from Eqs. �12� and �13�, respectively.

The propagator p̄n�t� at n�0 may be expressed in terms
of some functions Un�s ,x�, for which we have a linear recur-
sion, relating Un to Un−1 �see Appendix D�. These functions
are introduced in the following way. Let us choose two ver-
tices �n , i� and �n+1, j�, connected by an edge �Fig. 3�. We
define Sn;i,j

�l� �s� as

Sn;i,j
�l� �s� =

1

Pn,i�s���k�
Pn+l,k�s� . �21�

Here the summation is over all those vertices at a distance
n+ l from vertex 0, whose shortest path to vertex 0 runs
along the edge �n , i�→ �n+1, j�. In other words, the sum
in Eq. �21� is over all vertices of the lth generation
of the branch beginning from a chosen edge. For example,
Sn;i,j

�1� �s�=�k=1
bn+1,jPn+1,k�s�, as one can see from Fig. 3. Due to

the statistical homogeneity of the network ensemble the sta-
tistical properties of random variables Sn;i,j

�l� are independent
of the choice of vertices i and j, if they are connected by an
edge. For an infinite network, this statistic is also indepen-
dent of n. The recursion relation can be derived for the fol-
lowing averaged quantity which depends only on l:

Ul�s,x� = �Sn;i,j
�l� �s�exp�− x�n,ij�s��� . �22�

The recursion relation is derived in Appendix D. It is of the
following form:

0

n+1,j

n,j1,1

n+2,1

n+2,2
n+1,j

n+2,q −1

FIG. 3. Vertex �n+1, i� at distance n from the starting vertex 0,
its “ancestor” �n , j�, and its “descendants” �n+2,k�. k
=1,2 , . . . ,qn+1,k−1, qn+1,k is the degree of the vertex �n+1, i�.
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Ul�s,x� = e−x�
0




dyI0�2	xy�e−�1+s�y�1��T�s,y��Ul−1�s,y� ,

�23�

where I0 is a modified Bessel function of zero order. This
recursive relation is supplied with the initial condition

U1�s,x� = �1 +
�

�x
�T�s,x� . �24�

Finally, the Laplace-transformed propagator P̄l�s� is ex-
pressed as

P̄l�s� = �
0




dxe−sx���T�s,x��Ul�s,x� . �25�

Equation �23� may be presented in the form

Un = M̂Un−1, �26�

where M̂ is a linear integral operator. Let �m
−1�s� and �m�s ,x�

be its eigenvalues and eigenfunctions, respectively,

�m�s�e−x�
0




dyI0�2	xy�e−�1+s�y�1��T�s,y���m�s,y� = �m�s,x� .

�27�

Note that the general theory of integral operators is usually
formulated in terms of �m, which are called their character-

istic numbers. Operator M̂ becomes Hermitian after the sub-
stitution �m�x�=esx/2��1��T�s ,x���−1/2��s ,x�. The kernel of the
integral operator in Eq. �27� is bounded �31� if

�
0




dx�
0




dyI0
2�2	xy�e−�2+s��x+y��1��T�s,x���1��T�s,y�� � 
 .

�28�

This condition is always satisfied if s�0. Therefore, accord-
ing to theorems about integral equations with a Hermitian
bounded kernel �31�, all eigenvalues of this operator are real
and finitely degenerate. They form a discrete sequence
bounded from below, without any condensation point except
�=
. Eigenfunctions are orthogonal and normalizable with
the weight function e−sx�1��T�s ,x��,

�
0




dx�1��T�s,x��e−sx�k�s,x��m�s,x� = �km. �29�

Hence, the solution of the recursive relation �23� may be
presented as a series in the complete orthonormal set ��m�,

Ul�s,x� = �
m

Am�s��m
1−l�s��m�s,x� . �30�

Taking into account the initial condition �24� and the ortho-
normality condition �29�, the coefficients in this series may
be written as

Am�s� = �
0




dx�m�x��1��T�s,x��e−sx�1 +
�

�x
�T�s,x� .

�31�

Substituting Eq. �30� into Eq. �25�, we obtain for l�0 the
following relation:

P̄l�s� = �
m

Am�s�Bm�s��m
1−l�s� , �32�

where

Bm�s� = �
0




dxe−sx���T�s,x���m�s,x� . �33�

The resulting propagator P̄l�s� satisfies the condition of the
conservation of the number of particles �signals�, which in

the Laplace representation is �l=0

 P̄l�s�=1 /s. Taking into ac-

count Eq. �32� gives the following form of this condition:

P̄0�s� + �
m

Am�s�Bm�s�
�m�s� − 1

=
1

s
. �34�

IV. CONTRIBUTION OF FINITE CONNECTED
COMPONENTS

When the minimum vertex degree in the uncorrelated net-
work qm�2, then �in the thermodynamic limit� almost all the
network consists of one connected component. If, however,
qm=1, i.e., ��1�=�1�1�=���0�= q̄�1�0��0, then connected
components constitute finite fraction of the network even in
the thermodynamic limit. Their contribution to the propaga-
tor at t→
 is obvious, and can be calculated in a straight-
forward way. We, however, find this contribution by using
the technique described in Sec. III for the sake of illustration.

We set in T�s ,x� the limit s→0 and x→
, with sx fixed,
assuming that there exists a limiting function

��z� = lim
s→


T�s,z/s� . �35�

In Appendix E 3 we derive the following equation for �:

��z� = e−z�1���z�� . �36�

Comparing this equation with Eq. �B6� from Appendix B,
one can conclude that ��z�=H�e−z�, that is ����z��
=��H�e−z��= �exp�−zMi��. Here Mi is the size of the con-
nected component with a randomly chosen vertex i. It is
obvious that the giant connected component, whose size is
�N, does not contribute to ��z� at any z�0 as N→
. From
Eqs. �20� and �35�, we obtain a clear result for the limiting
value of the autocorrelator,

p0
�eq� � p̄0�t = 
� = lim

s→0
sP̄0�s� = �

0




dz����z�� = 
 1

Mi
� .

�37�

It means that the equilibrium distribution of the signal is
homogeneous within its connected component. Passing from

SAMUKHIN, DOROGOVTSEV, AND MENDES PHYSICAL REVIEW E 77, 036115 �2008�

036115-6



the variable z to x=��z� and using Eq. �36�, we calculate this
integral,

p0
�eq� = ��tc� −

1

2
tc���tc� . �38�

This result also has a definite meaning,

p0
�eq� =

1

N
�
i=1

N
1

Mi
� =

1

N
 �
Clusters

1� =
Nc

N
, �39�

where Nc is the total number of finite connected components.
A nonzero equilibrium value of the autocorrelator indi-

cates that the degeneracy of the Laplacian eigenvalue �=0 is
�N. The eigenvectors of this eigenvalue may be chosen in
the following way. Each such eigenvector has unit vector
components in one connected component and zeros in all
others. The degeneracy is equal to the total number of con-
nected components in the network.

The t→
 contribution of finite connected components to
p̄l�t� at l�0 may be extracted from the functions

ul�z� = lim
s→


Ul�s,z/s� . �40�

In this limit the recurrent relation �23� turns into

ul�z� = e−z�1����z��ul−1�z� �41�

�see derivation in Appendix E 3�. From Eq. �24� it also fol-
lows that u1�z�=��z�, so

ul�z� = �e−z�1����z���l−1��z� . �42�

Let us calculate pl
�eq�= p̄l�t=
�. The stationary value of Pij�t�

at t→
 is equal to 1 /Mj, where Mj is a connected compo-
nent of an initial vertex j. Consequently,

pl
�eq� = 
Qj

�l�

Mj
� , �43�

where Qj
�l� is the number of vertices at distance l from vertex

j. Using Eqs. �25�, �40�, and �42�, we obtain

pl
�eq� = �

0




dxe−x��x������x���e−x�1����x���l−1. �44�

At large l, the region z�1, where ��z� is close to tc, gives
the main contribution to the integral in Eq. �44�. As a result,
at large l, we have

pl
�eq� �

b

n
��1��tc��n, b =

q̄tc
2�1 − �1��tc��

�1��tc��1 − �1��tc�� + tc�1��tc�
.

�45�

Here we used that ��0�= tc=�1�tc� and ����0�
=tc/�1−�1��tc��, which follows from Eq. �36�.

V. SPECTRAL DENSITIES AND PROPAGATORS
FOR VARIOUS NETWORKS

Here we indicate four distinct kinds of uncorrelated ran-
dom networks with qualitatively different asymptotic behav-

iors of T�0,x��T0�x� at x→
, where T0�x� is the solution of
Eq. �19� at s=0. At x=0, we always have T0�0�=1. At x
→
 we have T0�
�=limx→
 lims→0 T�s ,x�=��0�. These
four types of networks differ from each other mainly by a
value of the minimum vertex degree.

�1� If the minimum vertex degree qm�3, then identically
��x�=0, and T0�x� exponentially decays to T0�
�=0 �see
Sec. V A�.

�2� If qm=2, then identically ��x�=0, and T0�x� decays to
T0�
�=0, but slower than any exponent �see Sec. V B�.

�3� If qm=1, then there are two possibilities �see Sec.
V C�:

�a� If z1=�1��1��1, then 0���0�= tc=�1�tc��1, T0�x�
→ tc as x→ +
. In this case the graph has a giant connected
component and a number of finite ones.

�b� If z1=�1��1��1, then ��0�=1. T0�x�=1 as x�0. In
this case the graph consists of only finite connected compo-
nents.

Let us assume qm�1 and consider in Eq. �19� the case of
small positive s and large x. According to definition �18�,
T�s ,x� is actually a Laplace transform of the probability dis-
tribution of the non-negative random variable �. Hence, it
cannot decay at x→
 faster than exponentially. In Appendix
E we show that

T�s,x� → A exp�− �m�s�x − ��s,x�� . �46�

Here A is simply a constant, and � is some correction term in
the exponential. The coefficient �m at the main, linear in x,
term in the exponential turns out to be the same as for regu-
lar Bethe lattice. It is defined by the relation

�m

1 − �m
= s + �qm − 1��m. �47�

This equation has two real solutions as s�sc, where

sc = − �c = − qm + 2	qm − 1 � 0. �48�

The physical branch of �m�s� is the one, positive at s�0. The
other term in the exponential in Eq. �46� is a sublinear func-
tion of x. Namely,

��x� = Bx�, � =
ln�qm − 1�

2 ln�1/�1 − �m��
=

ln�1/�1 − �c��
ln�1/�1 − �m��

,

�49�

where B is some constant. Here we introduced �c=�m�sc�
=1−1 /	qm−1.

As s is close to sc, � is close to 1, and ��s ,x� becomes
comparable with the main term. It is this region that deter-
mines physically interesting results. The behavior of ��s ,x�
at large x and s close to sc determines the behavior of the
spectral density ���� near its edge �c=−sc and the behavior
of the autocorrelator p̄0�t� at large t. It turns out �see Appen-
dix E�, that the analytic continuation of ��s ,x� on negative
s�−�c, ��−� ,x�, as a function of x is singular at some xs

�1 / ��−�c�. Therefore, the upper limit of integration in Eq.
�20� is in the upper half-plane of x, Im x�0 for Im ��0 and
vice versa. Then from Eq. �12� we obtain
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���� = �
−i


+i
 dx

2�i
e�x��T�− �,x�� . �50�

Note that if qm=2, then sc=�c=0. We consider this case
separately in Sec. V B.

A. Minimum degree qm�2

Let us set T�s ,x�=A exp�−�cx−��s ,x��. Note the differ-
ence of the definition of � with that in Eq. �46�: Here we
have the term −�cx instead of −�m�s�x in the exponent.
Therefore, ���s ,x= +
�=�m�s�−�c�1 now is not equal to
0. In Appendix E 1 we obtain the following expression, valid
when x�1 and �s−sc��1:

��s,x� =
x	s − sc

�qm − 1�3/4coth� 	s − sc ln�Cx�
�qm − 1�1/4 ln�qm − 1�

� , �51�

where C�1 is some number. Replace s by −��−�c,
�c=−sc=2	qm−1−qm. Then we have

��− �,x� =
x	� − �c

�qm − 1�3/4cot� 	� − �c ln�Cx�
�qm − 1�1/4 ln�qm − 1�

� .

�52�

This function has a singularity when the argument of cot
equal to �, i.e., at x=x0, where

x0 = C−1 exp���qm − 1�1/4 ln�qm − 1�
	� − �c

�
= C−1�qm − 1���qm − 1�1/4/	�−�c. �53�

When x is close to x0, one can replace cot z→−1 / ��−z� in
Eq. �52�.

Since T�−� ,x� is small at large 0�x��, one can replace
��T�−� ,x�� by its leading term ��qm��qmT�−� ,x�. Then,
changing in Eq. �50� the integration variable, x=x0y, and
taking into account Eq. �46�, we obtain up to a factor �1,

���� � x0�
C

dy

2�i
exp�− x0y�b +

a

ln y
��,

a =
qm ln�qm − 1�

	qm − 1
, b =

qm − 2
	qm − 1

. �54�

Finally, calculating this integral in the saddle point approxi-
mation, we obtain the density of eigenvalues of the Laplac-
ian spectrum near its end point �c,

���� � exp� �

2	� − �c

− d exp� �

	� − �c
��,

� = ��qm − 1�1/4 ln�qm − 1� , �55�

where d is some constant. Substituting Eq. �55� into the ex-
pression for the autocorrelator �13� and using the saddle
point approximation to calculate the integral, we obtain

p̄0�t� � exp�− �ct −
�2t

ln2�dt�� . �56�

Recall the notation T0�x�=T�0,x�. Since �m�0�= �qm

−2� / �qm−1��0, we have �1��T0�x���exp�−�qm−2��m�0�x�
at x→ +
, and the kernel of the integral equation �27� satis-
fies the condition �28�. It implies that at s=0 in the discrete
sequence of characteristic numbers �m�0���m, there is the
minimum one, �0�0. In Appendix F we show that �i� �0
=1, �ii� this characteristic number is the minimum one, and
�iii� the corresponding normalized eigenfunction is

�0�0,x� � �0�x� = − d0T0��x�, d0

= ��
0




dx�1��T0�x��T0�
2�x�� . �57�

Here d0 ensures proper normalization �29�, and the minus
sign stands simply for convenience ensuring �0�x��0.

When s�sc, in particular, near s=0�sc, the kernel in the
integral equation �27� is well behaved, and all �m�s� are
analytic functions of s. We can leave in Eq. �32� only the

leading term with the minimum �m. Then, P̄l�s�
�A0�s�B0�s��0

1−l�s� for large distances l from the initial ver-
tex. So at large time t and large distance l, the propagator
p̄l�t� is approximately

p̄l�t� = �
−i


+i
 ds

2�i
estP̄l�s� � �

−i


+i
 ds

2�i
estA0�s�B0�s��0

1−l�s� .

�58�

If the expression under the integral is analytic in s along the
integration contour, the main contribution to the asymptotic
of the integral gives the vicinity of the saddle point, where
st− l ln �0�s� is maximal. The saddle point position sc is the
solution of the equation t= l�0��s� /�0�s�. As a result, we have

p̄l�t� �
1

	2���sc�l
A0�sc�B0�sc��0�sc�exp�sct − l ln �0�sc�� ,

�59�

where ��sc�= ��ln �0�s����s=sc
. At a given t�1, this expres-

sion has a maximum as a function of l at l= lm�t�, where

�

�l
�sct − l ln �0�sc�� = ln �0�sc� = 0,

i.e., where �0�sc�lm , t��=1. Here sc�l , t� is defined from the
saddle point condition. Since �0�0�=1, the propagator p̄l�t�
is maximal at l= lm, sc�lm , t�=0. The behavior of �0�s� at
small values of �s� determines the shape of the propagator
near its maximum point. Since �0�s� is an analytic function
near s=0, and �0�0�=1, one can write ln �0�s�=�s−�s2 /2
+¯ and replace A0�s� and B0�s� by A0�0� and B0�0�. Then,
the expression �59� is reduced to a Gaussian integral, and we
have
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p̄l�t� �
A0�0�B0�0�

	2��l
exp�−

�t − �l�2

2�l
� . �60�

On the left-hand side of the normalization condition �34�,
only the term with m=0 has a simple pole singularity at s
=0. Then, we have lims→0 A0�s�B0�s� / ��0�s�−1�
=A0�0�B0�0� /�=1. We substitute the expressions for A0�0�
and B0�0� from Eqs. �31� and �33�, where the function �0�x�
is expressed in terms of T0�x� by using Eq. �57�. This leads to

� � v−1 = A0�0�B0�0�

=

�
0




dxT0��x��1��T0�x���1 +
d

dx
�T0�x��

0




dx���T0�x��T0��x�

�
0




dx�1��T0�x��T0�
2�x�

.

�61�

The parameter ��1 must be positive to ensure the conver-
gence in the summation over l. Equation �60�, as one can see
from its derivation, is valid if the saddle point position �sc�
= ��t− l /v� / ��l���1. So we may replace �l in Eq. �60� with
its value at l= lm, �vt, and, finally,

p̄l�t� �
1

	2�Dt
exp�−

�l − vt�2

2Dt
� , �62�

where D=�v3. Despite that our network is random, a signal
spreads over the network as a Gaussian packet, moving with
the constant velocity v from an initial vertex, and with the
dispersion �l− lm�2, which grows linearly with time. This is
the same kind of evolution as on a regular Bethe lattice.

Equation �62� is valid when one can neglect terms of the
order of s3 and higher in the expansion of ln �0�s� in the
powers of s, i.e., when l�s�c

3� t�s�c
3�1. Since sc= �l /v− t� / l

��l−vt� / t, this condition is reduced to �l−vt�� t2/3. The
width of the packet is �t1/2� t2/3, and so expression �62� is
relevant.

B. Minimum degree qm=2

If qm=2, then sc=0 as one can see from Eq. �48�. That is,
T�s ,x� as a function of x becomes nonanalytic at s�0. Be-
sides, �c=�m�sc�=0, so that the decay of T0�x��T�0,x� is
nonexponential in contrast to qm�2. Setting T�s ,x�=exp�
−��s ,x��, we obtain the following expression for small s and
large x�0 �see Appendix E 2�:

��s,x� �
1
	s
�	sx�a/� + sx� +

a

�
arcsinh	�sx

a
�

+
1

4
ln�s +

a

�x
� + C, a = � ln� q̄

2��2�
� � 0,

�63�

where C�1 is some constant. In the following we omit nu-
merical constants as inessential. When analytically continued
to s=−��0, ��−� ,x� as a function of x acquires a singular-
ity at x=xc=a /��. The density of Laplacian eigenvalues,

����, can be obtained from Eq. �50�. The main contribution
to the integral in Eq. �50� arises from the close vicinity of the
singularity point. In Eq. �50�, we expand � near xc in the
integral and change the integration variable from x to �
=��xc−x�. This results in

���� �
1

�3/2exp�−
a
	�

��
C�

d�

2�i
�−1/2 exp�− � +

4�3/2

3	�
� .

Here the integral is ��1/6, and the asymptotics at 0���1
is

���� �
1

�4/3exp�−
a
	�

� . �64�

We substitute this expression into Eq. �13�, and by using the
saddle point approximation, arrive at the following long t
asymptotics for the autocorrelator:

p̄0�t� � t1/18 exp�− 3�a

2
�2/3

t1/3� . �65�

Let us now consider the propagator p̄l�t� at l�1, t�1. This
asymptotics is also defined by Eq. �58�. As for qm�2, the
main contribution to the integral is from the region of small
�s�. The difference is that here A0�s�, B0�s�, and �0�s� all have
a singularity at s=0. Namely, s=0 is a branching point, giv-
ing a cut along the line �0,−
� in the complex plane of the
variable s. We will show, however, that this singularity is
very weak and does not contribute essentially to the propa-
gator, except for relatively small distances l.

Indeed, the small s, large x asymptotics of the eigenfunc-
tion �0�s ,x�, corresponding to the largest characteristic num-
ber �0�s�=1+o�s�, is �see Appendix E 2�

�0�s,x� � x−1/2T�s,x�

� x−1/2�s +
a

�x
�−1/4

exp�−
1
	s
�	sx�a/� + sx�

+
a

�
arcsinh	�sx/a�� . �66�

Then, comparing the leading terms in Eqs. �31� and �33� with
that in Eq. �20�, we conclude that the asymptotics of
Im A0�−�� and of Im B0�−�� on � are nearly the same as that

of ����� Im P̄0�−��. The difference is in powers of � in the
preexponential factors. In the leading order,

Im�A0�− ��� � Im�B0�− ���

� �
−i


+i
 dx

2�i
e�xT�− �,x��0�− �,x�

� �−5/6 exp�−
a
	�

� . �67�

The rate of singularity of �0�s�, if measured as a jump of a
function across the cut near its branching point, is even
smaller than in Eq. �67� for small �=−s�0. Let us take the
eigenfunction equation �27� at m=0, setting x=0. Then we
have
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�0
−1�s��0�s,0� = �

0




dye−�1+s�y�1��T�s,y���0�s,y� .

Then, setting s=−��0, and properly deforming the integra-
tion contour, we obtain in the leading order

Im ��− �,0� − ��0,0�Im �0�− ��

� �
C

dx
	x

exp�− �1 − ��x −
1
	�

��− �,x�� ,

where the function � is given by Eq. �63�. As a function of x
this integral has a singularity at x=a /��. In comparison with
the integral for ����, the above integral has an additional
term −x in the exponent, which turns into −a /�� at the sin-
gularity point. Therefore, we estimate the singularity of �0
near s=0 as Im �0�−���exp�−a /���.

Since all multipliers in Eq. �58� have sufficiently weak
singularities, we replace A0�s� and B0�s� with their values at
s=0 and neglect the singular part of �0�s�, leaving only the
regular part of the expansion ln �0�s�=s /v+�s2 /2+¯. As a
result, we arrive at the same Gaussian expression for the
propagator, Eq. �62�.

If we, however, fix the distance l�1 and increase the
time t, the saddle point sc�0 in the integral �58� moves
farther in the direction of negative s, and at large enough t
the contribution of the singularity becomes essential. De-
forming contour of integration, we rewrite Eq. �58� in the
following form:

p̄l�t� �
1

�
�

0




d�e−�t Im�A0�− ��B0�− ���0
1−l�− ��� .

�68�

Im �0�exp�−a /��� is small compared to Im A0�−��
� Im B0�−���exp�−a /	��. So we neglect the singularity of
�0 and set ln �0�−��=−� /v. Thus we arrive at

p̄l�t� � �
0


 d�

�5/6exp�− ��t −
l

v� −
a
	�
� . �69�

Calculating the integral in the saddle point approximation we
obtain

p̄l�t� � �t −
l

v
�−5/18

exp�− 3�a

2
�2/3�t −

l

v
�1/3� . �70�

Expanding ln �0�s�, we neglected terms of the order of s2

and higher. This is justified if the saddle point position in the
integral �69�, �s��t− l /v�−2/3, obeys the condition
l�s

2��s
−1/2 which is equivalent to t− l /v� t3/5. Otherwise,

p̄l�t� is given by Eq. �62�, which means that the probability
for the signal to return is small. This form of the packet tail
is due to the possibility that either initial vertex 0 or the final
one in the lth shell may occur in a chain fragment in the
graph.

C. Minimum degree qm=1

When there is a finite fraction of “dead ends,” i.e., verti-
ces of degree 1, the network contains finite-size connected
components. They lead to the �-functional peak in the
Laplace spectrum and so to nonzero limits of the averaged
propagators at t→
. If �1��1��1 �Appendix B�, then besides
the finite connected components, there is a giant connected
one whose size scales as the network size. Here we show that
the contribution of this giant connected component to the
observable quantities is qualitatively the same as in networks
with qm=2.

If qm=1, Eq. �19� still has the nontrivial solution T0�x�
�T�0,x�. T0�0�=1 as for any other qm, but T0�+
�
=limx→0 lims→0 T�s ,x /s�=��0�= tc�0 �see Appendix B�. At
small s�0 and large x�0, the function T�s ,x� is close to
��sx�, and so we search for T�s ,x� in the following form:

T�s,x� = ��sx� + e−��s,x�, �71�

where the last term is assumed to be small. The asymptotic
solution for � is �Appendix E 3�

��s,x� =
1
	s

g�sx� +
1

4
ln sg�2�sx� + C ,

g�z� = �
0

z

dy	1 −
ln �1����y��

y
, �72�

where C�1 is some constant. Continuing this result to s=
−��0, we take into account that g�z� has a singularity at z
=zs�0, where zs satisfies the equation 1−ln �1����zs�� /zs

=0. The equation for zs, �1����zs��=ezs, becomes more com-
prehensive with a new variable ts=��e−zs�. Using the im-
plicit definition �36� of ��z�, we arrive at the equation for ts,

�1��ts� =
�1�ts�

ts
. �73�

This equation is shown graphically in Fig. 4, together with
the equation for tc=�1�tc�� ts, ��tc�=0.

An expression for the spectral density ���� may be ob-
tained by calculating the integral in Eq. �50�, where for small
� and large x, we approximately set

0 1
x

1

�1�x�

tc ts

FIG. 4. Graphical solution of the equations for tc, tc=�1�tc� and
for ts� tc, �1��ts�=�1�ts� / ts. The thick solid line shows the function
�1�x�. The thin solid lines represent the function x and the tangent
to the curve �1�x�, which passes through the center of coordinates.
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��T�− �,x�� � ����− �x�� + �����− �x��e−��−�,x�.

�74�

While the first term results in the �-functional peak, the in-
tegration of the last one gives the asymptotics of ���� at
small positive �. The main contribution into the integral
gives the close vicinity of the positive singularity point xs
=−zs /��0. Near this point the first multiplier in the last
term in Eq. �74� can be replaced by a constant �����zs��
=���ts�, and the function g in the expression for � in �72�
can be replaced by its expansion g�zs+��= ia+ ih�5/4, h�1,
����1 with

a = �
tc

ts

dx
�1�x� − x�1��x�

x�1�x�
	 ln �1��x�

ln��1�x�/x�
− 1 �75�

�see Appendix E 3�. Then we arrive at the following
asymptotic result for ����:

���� − p0
�eq����� � �−9/10 exp�−

a
	�

� . �76�

As it follows from Eqs. �76� and �13�, the autocorrelator
p̄0�t� decays to its equilibrium value as

p̄0�t� − p0
�eq� � �

0


 d�

�9/10exp�− �t −
a
	�

�
� t−7/30exp�− 3�a

2�2/3
t1/3� . �77�

One can calculate the propagator p̄l�t� at large l using Eq.
�58�. As compared with Secs. V A and V B, the kernel of Eq.
�27� is not any more bounded at s=0 because the integral in
Eq. �28� becomes divergent. Due to this fact, the spectrum of
Eq. �27� contains a continuous part. Let us find eigenvalues
� and eigenfunctions ��x� in the continuous spectrum.
�The notation �m�x���m�s=0,x� we leave for the discrete
part of the spectrum.� We see in Sec. IV that when s→0, the
recursion relation �23� can be transformed to Eq. �41�, as-
suming that Ul�s ,x��ul�sx� at small s. An equation for the
eigenfunctions is

��x� = �e
−x�1����x����x� ,

which has the solutions ��x�=��x−� corresponding to the
eigenvalues �=e /�1����x��. It is the continuous part of the
spectrum that after proper modification of the relations
�29�–�33�, gives the stationary part of propagator �44�. Sup-
pose that there is a giant connected component in the net-
work. Then along with the continuous part of the spectrum,
whose minimum characteristic number is �=0=1 /�1��tc�
�1=�m=0, there is a discrete spectrum with the minimum
characteristic number �0�s=0�=1 corresponding to the
eigenfunction �0�x�=−T0��x� �see Appendix F�.

In the same way as for qm=2 �see Appendix E 3�, one can
show that the asymptotics at small s and large positive x of
the eigenfunction �0�s ,x�, corresponding to the lowest char-
acteristic number �0�s�, is �0�s ,x��x−1/2 exp�−��s ,x��,
where ��s ,x� is given by Eq. �72�.

From Eqs. �31� and �33� we obtain

Im�A0�− ��� � Im�B0�− ��� � �
−i


+i
 dx

2�i
e�x�0�− �,x�

� �
−i


+i
 dx
	x

e�x−��−�,x� � �−1/2 exp�−
a
	�

� .

�78�

This equation differs from Eq. �67�, because in the singular-
ity point xs=−zs /��1, T�−� ,xs����−zs��1. So we omit-
ted T�−� ,xs� in Eq. �78�, in contrast to the case qm=2, where
the function T�−� ,xs� is of the same order of smallness as
�0�−� ,xs�. Here, as for qm=2, the singularity of �0�s� is such
that the jump along the cut �−
 ,0� in the complex planes s
behaves as Im �0�−���exp�−a /��.

The derivation of p̄l�t� for qm=1 is similar to that for qm

=2. We arrive at the same moving Gaussian packet �62�. The
only difference is that now we must take into account the
contribution of finite clusters �continuous spectrum�. The re-
sults for l�1 and t�1 are

p̄l�t� = pl
�eq� +

1
	2�Dt

exp�−
�l − vt�2

2Dt
� �79�

for �vt− l�� t3/5, where v is given by Eq. �45�, and D
=v3�0��0�. In the low l tail, l�vt, vt− l� t3/5, the form of the
propagator is modified to

p̄l�t� − pl
�eq� � �t −

l

v
�−13/30

exp�− 3�a

2
�2/3�t −

l

v
�1/3� .

�80�

Thus, again, we have the Gaussian packet, Eq. �79�, moving
within the giant connected component. This Gaussian is sup-
plied with a small tail at 1� l� t, Eq. �80�. The reason for
this tail is that initial or final vertices may be “dead ends.”

VI. SUMMARY, DISCUSSION, AND CONCLUSIONS

In this paper we have presented a theory, which enables us
with the analytical calculation of statistical properties of the
Laplacian operators of infinite random networks and random
walks on them. We have considered the resolvent of the La-
placian and the propagator of a random walk. These charac-
teristics are connected through a Laplace transform, Eqs.
�10� and �11�. In particular, the average values of the diago-
nal element of the resolvent matrix give us the spectral den-
sity of the Laplacian, Eq. �12�, and the time dependence of
the autocorrelator. We have also derived equations, which
solution allows us to find the averages of the nondiagonal
elements of the resolvent. After the Laplace transformation,
these averages show how the distance of the signal from its
origin changes with time, Eq. �9�.

Our scheme is based on equations relating the distribu-
tions �or other statistical properties� of random variables.
This is an essential advantage over most of the existing ap-
proaches, based on equations, which relate to the values of
some random variables for a given network realization. To
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solve the problems of the Laplacian spectrum and of random
hopping motion, one must take the following steps.

�i� Solve the integral equation �19� for the function T�s ,x�
defined by Eqs. �17� and �18�. �In the equivalent form, it is
Eq. �C7�.� Technically, it is the most difficult step. We have
only obtained the asymptotics of T�s ,x� at Re x→ +
. We
have found that T as a function of x is an analytic and expo-
nentially decaying function as s�sc, where sc=−�c�0 is a
parameter which depends only on the minimum vertex de-
gree qm.

�ii� With T�s ,x�, one can �a� calculate the average of the
resolvent’s diagonal, Eq. �20�, then �b� analytically continue
the result from the positive s to s=−�� i0, ��0, and finally
�c� obtain, using Eq. �12�, the spectral density of the Laplac-
ian �32�.

�iii� With the known ���� near the spectrum edge, obtain
the asymptotics of the autocorrelator p̄0�t� at t→
 by using
Eq. �13�.

�iv� Find the sequence of functions Ul�s ,x�, l�1, defini-
tion �22�, by using the integral recursive relation �23� with
the initial condition �24�. Then obtain the Laplace-
transformed propagator P̄l�s� by calculating the integral �25�
�33�.

�v� Calculate the inverse Laplace transform of P̄l�s�, that
is, the propagator p̄l�t�. The asymptotics of p̄l�t� at large l and
large t is determined by the smallest characteristic number
�0�s� at small �s�.

The results of these calculations of asymptotics are sum-
marized in Table I and Fig. 1. If qm�3, the tail in the density
of eigenvalues decreases extremely rapidly with 1 / ��−�c�,
see Eq. �55�, and therefore practically cannot be revealed by
numerical methods. Studies based on these methods usually
result in a form of ���� resembling Wigner’s semicircle law
�see, e.g., Refs. �4,6��. This is also the case in networks with
qm=1,2. In particular, for the Erdős-Rényi graphs our results
contain the leading contributions to the spectra and the as-
ymptotics of the random walk autocorrelator found in Ref.
�3�. In addition to these leading terms, we have found power-
law factors, see Eqs. �65� and �77�. In Ref. �8�, Laplacian
spectra of an infinite uncorrelated network with high density
of connections �the mean degree is assumed to be q̄→
�
were found. The authors of that work used the static model
which provides a network with, in particular, vertices of de-
gree 1 and 2. Nonetheless, the spectrum of the Laplacian
operator in Ref. �8� had a gap. The reason for this difference
from our results is not the different model of an uncorrelated
network but rather the high mean degree limit assumed in the
work �8�.

When are our analytical results observable? Let us inspect
the resulting expressions for the propagator p̄l�t�. Our results
are based on the tree ansatz, pl�t� should have nonzero values
in the small �compared to the whole network� vicinity of the
starting vertex 0, so that we can treat this region as a tree. At

large times t the signal spreads at the distance l̄=vt� t, Eq.
�62�. The mean intervertex distance in the network is �ln N
�29,35�. So, our results are applicable if 1� t� ln N. In net-
works with qm�3 the decay of the autocorrelator is basically
exponential with some correction �see Eq. �56��. This correc-
tion can be observed if

1/ln2 t � 1/ln2 ln N � 1. �81�

It is impossible to fulfill this criterion either in real-world
networks or in numerical simulations.

In the networks, containing chainlike segments, i.e., when
qm=1 or 2, the criterion is much less stringent. We require
that the value of the autocorrelator p̄0�t� in �65� at the char-
acteristic time t� ln N, essentially exceeds its equilibrium
value p̄0�t=
��1 /N for a finite network. So in these net-
works, our dependences are observable if

t1/3/ln N � ln−2/3 N � 1, �82�

which is much easier to satisfy than condition �81�.
In many applications of the Laplacian spectrum, results,

obtained in the infinite network limit, are of little use. A good
example is synchronization �9,34�. In this problem the low-
est, size-dependent eigenvalue of the Laplacian plays a key
role. Let us briefly discuss the role of this eigenvalue in
application to our problems. The process of a signal spread
over the network consists of two distinct stages. We dis-
cussed the first one. In the second stage, the essence of the
process is the relaxation to the homogeneous distribution,
where the probability to find a signal at any vertex is the
same, namely, 1 /N. In this last stage, �pi0�t�−1 /N��1 /N. In
this situation, loops must be taken into account. Furthermore,
in this stage, the knowledge of the Laplacian spectral density
is not sufficient. Rather, one should ask the following: What
is the probability distribution of �2 �the lowest nonzero ei-
genvalue�?

Figure 1 demonstrates that when qm=1 or 2, there is no
gap in the Laplace spectrum. On the other hand, we have
shown that in infinite networks with minimum vertex degree
qm�2, the density ����=0 for 0����c. In contrast, in fi-
nite networks, Laplacian eigenvalues �i exist in this range,
though only a very small fraction of the total number of the
eigenvalues. The statistics of this part of the spectrum deter-
mines the second stage of the evolution of pi0�t� to the equi-
librium. We believe that this stage may be described in the
framework of an approach developed in Ref. �29� for calcu-
lation of intervertex distance distributions. We leave this
challenging problem for future study.

In summary, we have strictly shown that the region of low
eigenvalues in the Laplacian spectra of sparse uncorrelated
complex networks and the asymptotics of random walks on
them are essentially determined by the lowest vertex degree
in a network.
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APPENDIX A: OTHER LAPLACIANS AND PROCESSES

Here we give a short list of standard Laplacians and cor-
responding processes. Three different forms of a Laplacian
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operator are discussed in literature. In this paper we dis-
cussed the form �1� corresponding to the process defined by
Eq. �2�. The second form

Lij = �ij −
1

qi
Aij , �A1�

corresponds to the following process:

ṗij�t� = �
k=1

N
1

qk
Aikpkj�t� − pij�t�, pij�0� = �ij . �A2�

This is a random walk process with the unit escape rate of a
particle from any vertex. The particle jumps to any of qi
nearest neighbors of vertex i with the same probability 1 /qi.
We do not consider this process here, although it can be
described in the framework of the approach of this paper. We
have found that the singularity of the spectrum at the lowest
eigenvalue of this Laplacian and the long-time asymptotics
of the autocorrelator of this random walk are quite similar to
those we found for the operator �1� and the process �2�.

The third, “normalized,” form

Lij = �ij −
1

	qiqj

Aij �A3�

�see, e.g., Ref. �6�� is, one may say, equivalent to the form
�A2� in the following sense. Operators �A2� and �A3� are
connected by a similarity transformation. The connecting op-

erator Ŵ is diagonal, Wij =�ijqi. These two operators have the
same spectrum of eigenvalues. Their eigenfunctions are con-

nected by the operator Ŵ.

APPENDIX B: DEGREE DISTRIBUTION
IN Z-REPRESENTATION

Here we represent the main relations in the
Z-transformation �generating function� approach to uncorre-
lated networks. This useful technique allows one to com-
pletely describe the structure of these random networks. The
Z-representation of a discrete random variable qi
=0,1 ,2 , . . . is defined as

��z� =
1

N
�
i=1

N

�zqi� = �
q=0




��q�zq. �B1�

��z� is also called the generating function of ��q�. It is ob-
vious that ��1�=1. Differentiating ��z� and setting z=1, we
obtain an expression for the average vertex degree,

���1� = �
q=0




q��q� = �q� � q̄ . �B2�

In general,

��x
d

dz
�m

��z��
x=1

= �
q=0




qm��q� = �qm� . �B3�

For branching numbers bi=qi−1, we have

�1�z� =
1

2L
�
i,j=1

N

�Aijz
bj� =

1

2L
�
j=1

N

�qjz
qj−1�

=
1

q̄
�
q=0




q��q�zq−1 =
���z�

q̄
. �B4�

The function �1 also obeys a normalization condition,
�1�1�=1.

This function was successfully used by Newman, Stro-
gatz, and Watts �35� �compare with the earlier works by Mol-
loy and Reed �36,37�� in their calculations of the size distri-
butions of nth connected components of a vertex. Recall that
this is a number of vertices which are not further than n steps
from a vertex. For example, the distribution for the first con-
nected component in Z representation is z��z�, for the second
one, it is z��z�1�z��, and, in general, the distribution for an
nth component is Gn�z�=z��Hn�z��. Here the sequence Hn is
defined by the recursion relation

Hn�z� = z�1�Hn−1�z��, H0�z� = z . �B5�

Its stationary solution H�z� satisfies the equation

H�z� = z�1�H�z�� . �B6�

So G�z�=z��H�z��= �zMi� is the transformed probability
function that a randomly chosen vertex is in a connected
component of size Mi.

The function G�z� allows one to find, in particular, the
relative size of a giant connected component, m
=N
 /N. Let
us consider the solutions of Eq. �B6� as z→ +0, H�+0�= tc;
tc=�1�tc�. Beside the trivial solution equal to zero, there is
another solution, tc�1 �see Fig. 4�,

tc = �1�tc�, 0 � tc � 1 if z1 = �1��1� =
���1�
���1�

� 1.

�B7�

So ��tc� is the total relative size of all connected components
of the network, and the relative size of the giant connected
component is

m
 = 1 − ��tc� . �B8�

Note that the condition �B7� may be written as

�
q

q�q − 2���q� � 0.

If there are no “dead ends” in the network, then tc=��tc�
=0, and almost all vertices in the network are in the giant
connected component.

APPENDIX C: EQUATION FOR THE DISTRIBUTION
OF � AND AUTOCORRELATOR

Here we show how to derive �i� the key equation of this
paper, namely Eq. �19� for T�s ,x� �which is the Laplace rep-
resentation of the distribution of �n,ij�, �ii� its equivalent form
�C7�, and �iii� expression �20� for the autocorrelator in terms
of T�s ,x�.
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If n�1, Eq. �14� may be written as �see Fig. 3�

sPn+1,i�s� − �Pn,j�s� − Pn+1,i�s�� + �
k=1

bn+1,i

�Pn+1,i�s� − Pn+2,k�s��

= 0. �C1�

Dividing both parts of the equation by Pn+1,i�s�, and taking
into account the definition �17�, we obtain

�n,ij�s�
1 − �n,ij�s�

= s + �
k=1

bn+1,i

�n+1,jk�s� . �C2�

If n=0, Eq. �14� takes the form

sP0�s� + �
k=1

q0

�P0�s� − P1k�s�� = 1. �C3�

Dividing both sides of Eq. �C3� by P0, and taking into ac-
count Eq. �17�, we obtain

P0�s� = �s + �
k=1

q0

�0,0k�−1. �C4�

Recursive relations �C2� express the set of random variables
�n,ij, n�0, in terms of the set of independent and statistically
equivalent random variables qm,i, m�n. It is important that
the variable �n,ij depends only on the degrees of vertices
belonging to the tree branch, which grows from the edge
�n , i�− �n+1, j�. So in Eq. �C2�, �n,ij�s� is expressed through
qn+1,j independent random variables: The branching number
bn+1,j =qn+1,j −1 and bn+1,j statistically equivalent variables
�n+1,jk, k=1, . . . ,bn+1,j. In the thermodynamic limit, the sta-
tistical properties of branches, starting at any distance from
the initial vertex, are the same. Consequently, all random
variables �n,ij are distributed equally, independently of i , j
and n. Then, omitting unnecessary indices, one can rewrite
Eq. �C2� as

ey exp�−
y

1 − ��s�� = e−sy�
k=1

b

e−y�k�s�. �C5�

The next step is averaging both the parts of Eq. �C5�. We use
definition �18�, properties of statistical equivalence of �, and
mutual independence of the branching number b and all �k.
We also use the following integral identity:

e−y/� =
	y

i�
�

−i
+�

+i
+� dx
	x

K1�2	xy�e�x, �C6�

where K1 is the MacDonald function of index 1. Then

exp�−
y

1 − �
� =

	y

i�
�

−i
+�

+i
+� dx
	x

K1�2	xy�e�1−��x.

Finally, we have

ey
	y

i�
�

−i
+�

+i
+� dx
	x

K1�2	xy�exT�s,x�

= e−sy���T�s,y��b�� = e−sy�1�T�s,y�� , �C7�

where definition �B4� was used. �Here b is a branching co-
efficient of some edge.�

Let us now derive Eq. �19�. Equation �C2� can be also
written as

��s� = 1 −
1

1 + �s�
, �s� = s + �

k=1

b

�k�s� , �C8�

where some of the indices are omitted for the sake of brevity.
Now one can use the following integral identity, equivalent
to Eq. �C6�:

ex/� = 1 + 	x�
0


 dy
	y

I1�2	xy�e−�y , �C9�

where I1 is the modified Bessel function of index 1. Then

�e−x��s�� = T�s,x� = e−x�ex/�1+�s���

= e−x�1 + 	x�
0


 dy
	y

I1�2	xy�e−y�e−�x���
= e−x�1 + 	x�

0


 dy
	y

I1�2	xy�e−�1+s�y��T�s,y��b��
= e−x�1 + 	x�

0


 dy
	y

I1�2	xy�e−�1+s�y�1�T�s,y��� ,

which gives Eq. �19�.
After averaging, Eq. �C4� takes the form

P̄0�s� = �
0




dxe−sx
�
k=1

q0

exp�− x�0,0k�� .

Taking into account the property of statistical independence
and equivalence indicated above, we obtain Eq. �20�.

APPENDIX D: DERIVATION OF THE RECURSION
RELATION

Let us derive the recursion relation �23� for U��s ,y�. Con-
sider the following expression:

Sn,ij
�l� �s�

1 − �n,ij�s�
exp�−

y�n,ij�s�
1 − �n,ij�s�� . �D1�

Differentiating the identity �C6� with respect to x we have

1

�
e−y/� = �

−i
+�

+i
+� dx

�i
K0�2	xy��e�x. �D2�

Substituting �=1 / �1−�� and using the definition of Ul, Eq.
�22�, we transform the expression �D1� into
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ey�
−i
+�

+i
+� dx

�i
K0�2	xy�Sn,ij exp�x�1 − �n,ij�s��� , �D3�

where K0 is MacDonald’s function of index 0. In the infinite
network the expression �D3� is independent of the chosen
edge �n , i�− �n+1, j� and depends only on l and on s. Aver-
aging Eq. �D3� we obtain

ey�
−i
+�

+i
+� dx

�i
K0�2	xy�exUl�s,x� . �D4�

On the other hand, due to the treelike structure, the first
multiplier in the angular brackets in Eq. �D1� may be ex-
pressed as a sum of terms with l→ l−1 �see Fig. 3�,

Sn;i,j
�l� �s� = �1 − �n,ij�s�� �

k=1

bn+1,j

Sn+1,jk
�l−1� �s� . �D5�

Using Eq. �D5� together with Eq. �C2�, we see that the ex-
pression �D1� is equal to the following:

e−sy �
k=1

bn+1,i

exp�− y�n+1,jk�s�� �
m=1

bn+1,j

Sn+1,jm
�l−1� �s� . �D6�

Let us average Eq. �D6� taking into account the statistical
properties of the variables � and b �or q�, indicated above.
Note that in each of the bn+1,j terms we have bn+1,j −1 mul-
tipliers �exp�−y�n+1,jk�s���=T�s ,y� with k�m, and the mul-
tiplier �Sn+1,jm

�l−1� �s�exp�−y�n+1,jk�s���=Ul−1�s ,y�. So the re-
maining average over bn+1,j �b can be easily performed,
which gives

e−sy�
b

b�T�s,y��b−1�1�b�Ul−1�s,y� = e−sy�1��T�s,y��Ul−1�s,y� .

�D7�

�Recall that the distribution function of b is �1�b�, Eq. �15�,
i.e., �1�z� in Z-representation, Eq. �B4�.� Equating expression
�D1� to Eq. �D7�, we derive the recursion relation for Ul in
the following form:

ey�
−i
+�

+i
+� dx

�i
K0�2	xy�exUl�s,x� = e−sy�1��T�s,y��Ul−1�s,y� .

�D8�

Equation �27� for eigenfunctions �m�s� can also be written as

ey�
−i
+�

+i
+� dx

�i
K0�2	xy�ex�m�s,x� = e−sy�1��T�s,y���m�s,y� .

�D9�

Let us now replace � in the definition of Ul, Eq. �22�, with its
expression in terms of the random variable �s�, ��s�
=�s� / �1+�s��. In turn, for �s� we use relation �C8�. Again,
use Eq. �D5� for S. Differentiating integral identity �C9� with
respect to x gives

ex/� = �
0




dyI0�2	xy��e−�y . �D10�

Then we have

Ul�s,x� = e−x�
0




dyI0�2	xy�e−�1+s�y

�
 �
k=1

bn+1,i

e−y�n+1,jk�s� �
m=1

bn+1,j

Sn+1,jm
�l−1� �

= e−x�
0




dyI0�2	xy�e−�1+s�y

��
b

b�T�s,y��b�1�b�Ul−1�s,y� . �D11�

Using Eq. �D7� for averaging over b readily leads to Eq.
�23�. The initial condition �24� follows directly from the defi-
nition of Ul, Eq. �22�.

APPENDIX E: ASYMPTOTIC SOLUTIONS OF INTEGRAL
EQUATIONS

Here we obtain the asymptotic solutions of integral equa-
tion �C7� for T�s ,x� in all three situations: �i� qm�2, �ii�
qm=2, and �iii� qm=1.

Calculating the asymptotics at large x we replace the
MacDonald functions K��2	xy� with the leading term of its
asymptotic expression

K��z� →	 �

2z
e−z. �E1�

This asymptotics is independent of �. Then Eqs. �C7� and
�D8� at large x take the forms

ey y1/4

i	2�
�

−i
+�

+i
+� dx

x3/4exp�x − 2	xy�T�s,x� = e−sy�1�T�s,y��

�E2�

and

ey 1

iy1/4	2�
�

−i
+�

+i
+� dx

x1/4exp�x − 2	xy�Ul�s,x�

= e−sy�1��T�s,y��Ul−1�s,y� . �E3�

Equation �D9� in the asymptotic limit has the form

ey 1

iy1/4	2�
�

−i
+�

+i
+� dx

x1/4exp�x − 2	xy��m�s,x�

= �m�s�e−sy�1��T�s,y���m�s,y� . �E4�

Let us first consider Eq. �E2� in the case s�0, y→
. Ac-
cording to the definition �18� of T�s ,x�, this function is the
Laplace transform of the probability density of a random
variable ��s�. This variable satisfies the condition 0���1,
as it follows e.g., from the recursion relation �C2�. Hence, �i�
the function T�s ,x� is analytic everywhere in the complex
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plane x, and T�s ,x�→0 as Re x→
; �ii� T�s ,x� cannot de-
crease with x faster than exponentially. Then T�s ,x� can be
represented as

T�s,x� = A exp�− �m�s�x − �0�s,x�� , �E5�

where �m�0, and �x�0�s ,x�→0 as x→ +
. If qm�1 �we
will consider the other case separately�, then �1 on the right-
hand side of Eq. �E2� can be replaced with its leading term,
�1�z�→qm��qm�zqm−1,

y1/4

2i�1/2�
−i


+i
 dx

x3/4exp��1 − �m�x − 2	xy − �0�x��

=
qm

q̄
��qm�Aqm−2 exp�− �1 + s�y − �qm − 1��my

− �qm − 1��0�y�� . �E6�

The integral on the left-hand side may be treated in the
saddle point approximation. The saddle point equation is the
condition that the derivative of the function in the exponen-
tial becomes equal to zero, namely,

y = x�1 − �m − �0��x��2. �E7�

This equation also expresses y in terms of x. On the right-
hand side, we assume that

�0�y� � �0��1 − �m�2x� − 2�1 − �m�x�0��x��0���1 − �m�2x� .

One must prove afterwards that the neglected terms of the
order of x�0�

3, and ones with higher derivatives, are small. If
we set �0�=0 in the preexponential factor of the saddle point
approximation, it reduces to 1. So we arrive at the following
equation for �0:

ln�qm

q̄
��qm�Aqm−2� + �1 − �m�2�s + �qm − 1��m −

�m

1 − �m
�x

− 2�1 − �m��s + �qm − 1��m −
�m

1 − �m
�x�0��x�

+ �qm − 1��0��1 − �m�2x� − �0�x� + �1 + s

+ �qm − 1��m�x�0�
2�x� − 2�qm − 1��1 − �m�x�0��x�

��0���1 − �m�2x� = 0. �E8�

The main term of this equation, linear in x, reduces to zero if

�m

1 − �m
= s + �qm − 1��m. �E9�

It also reduces the third term in Eq. �E8� to zero. Suppose
that our network is a regular Bethe lattice with the coordina-
tion number qm. Then Eq. �C7�, equivalent to Eq. �20�, has
the exact solution T�s ,x�=exp�−�m�s�x�, where �m�s� is the
proper solution of Eq. �E9�. This �m�s� is a regular function
of s as s�sc=−qm+2	qm−1, sc�0, and �m�sc���c=1
−1 /	qm−1. At s=sc, �m�s� has a square root singularity. So
in the regular Bethe lattice, the density of Laplacian eigen-
values ���� is nonzero at ���c=−sc=qm−2	qm−1, and
�����	�−�c at �−�c�1. Thus, we can conclude, that for
any network with qm�1, the edge of the spectrum is �c

�0. Moreover, �c�qm�2��0. In random networks, the as-
ymptotics of ���� turn out to be sharply different from a
regular Bethe lattice.

Requiring that the main correction to the leading term in
Eq. �E8� also asymptotically vanish gives �qm−1��0��1
−�m�2x�=�0�x�. This equality is satisfied when

�0�x� = Bx�, � =
ln�qm − 1�

2 ln�1/�1 − �m��
=

ln�1/�1 − �c��
ln�1/�1 − �m��

.

�E10�

If s�sc, then �m��c and ��1. This means that all approxi-
mations made during the derivation are justified. Therefore,

the integral in Eq. �20� is convergent, and P̄0�s� is a regular
function of s. If, however, s→sc, then �→1. That is, the last
two terms in Eq. �E8� should be also taken into account
when s is close to sc. In this region of s, Eq. �E8� and a
similar equation for the asymptotics of �0�x�, which can be
derived from Eq. �D9�, must be treated in different ways for
qm�2 and for qm=2. Note that if qm=1, then Eq. �E8� must
be replaced with a slightly different equation.

1. Minimum degree qm�2

In this case we can set the first term in Eq. �E8� to 0,
properly choosing the value of the constant A in Eq. �E5�.
We set T�s ,x�=exp�−��� ,x��. Here ��� ,x�=�0+�mx in-
cludes, besides �0, also a slowly varying linear term �mx.
Here we introduce a small variable �=	s−sc.

First, let us consider Eq. �E8� at s=sc and �=�c. We have

�qm − 1��� x

qm − 1
� − ��x� + 	qm − 1y��2�x�

− 2	qm − 1y���x���� x

qm − 1
� = 0.

Now we make the substitution ��x�= �qm−1�−1/2x��ln x�. We
assume that � is a small and slowly varying function of its
argument. Then, we make the following approximations,
which must be justified afterwards. Replace ��z−ln�qm−1��
in the first term with ��z�−���z�ln�qm−1�, where z=ln y, and
neglect all derivatives of � in the last two terms. As a result
we obtain

ln�qm − 1����z� + �2�z� = 0.

This equation has the solution ��z�=ln�qm−1� / �z+c�, where
c�1 is some constant of integration. Thus, finally, we obtain

��� = 0,x� =
x ln�qm − 1�

	qm − 1 ln�Cx�
. �E11�

Now assume ���2= �s−sc= ��−�c���1. The first term in Eq.
�E8� reduces to �2y / �qm−1�. We neglect the second term of
the equation, assuming it to be small. After the same set of
substitutions and approximations as in the case s=sc, we
have the following equation for ��z�:
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ln�qm − 1����z� + �2�z� =
�2

	qm − 1
.

Solving this equation, we obtain the following result for
��� ,x�:

���,x� =
�x

�qm − 1�3/4coth� � ln�Cx�
�qm − 1�1/4 ln�qm − 1�� .

�E12�

After substitution �=	s−sc, this turns into Eq. �51�.

2. Minimum degree qm=2

Here �m�s�→0 as s→0. Then at small �s� we can consider
��s ,x�=�0�s ,x�+�m�s�x as a slowly varying function. When
calculating the integral in Eq. �E2� in the saddle point ap-
proximation, we take also into account the preexponential
factor as a correction, though it is close to 1. Replacing on
the right-hand side �1�T� with its leading term, linear on T,
and taking into account the saddle point equation y=x�1
−���x��2, we have

� 1 − ���x�
1 − ���x� − 2x���x��

1/2

exp�x��2�x� − ��x��

=
2��2�

q̄
exp�− sx − ��x� + 2x��2�x�� . �E13�

Here we omitted negligibly small terms, 2sx���x� and oth-
ers.

Accounting for the smallness of �� and x��, we obtain
the equation

x��2�x� − y���x� = sx +
a

�
, a = � ln� q̄

2��2�
� � 0.

�E14�

We assume that the first term on the left-hand side is small
and search for the solution of this equation in the form �
=�1+�2. Here �1 must be found from x�1�

2=sx+a /�. At
s=0 we find �1=2	ax /�+c, where C is some constant of
integration, C�1. At s�0, performing the integration, we
have

�1�x� =
1
	s

f�sx� + C, f�z� = 	z�a/� + z� +
a

�
arcsinh	�z

a
.

�E15�

In principle, here C=C�s�, but for small s one can set C�s�
=C=C�0�. For �2 we have 2�1��2�=�1�. Therefore, up to the
constant, �2= �ln �1�� /2. As a result, we have asymptotically
the expression �63� for �=�1+�2.

We replace in Eq. �D9� K0 with its asymptotic �E1� at
large values of argument. Then, taking into account that
T�s ,x� is small at large x, we replace �1��T� on the right-hand
side with its value of zero argument, 2��2� / q̄. As a
result, we arrive at the following equation for �0�s ,x�
=exp�−��s ,x��:

ey

2iy1/4	�
�

−i
+�

+i
+� dx

x1/4exp�− 2	xy + x − ��x��

= �0�s�
2

q̄
��2�exp�− sy − ��y�� . �E16�

This equation differs from Eq. �E6� for ��x�=�0�x�+�m�s�x
only in the preexponential factor on the left-hand side. Quite
analogously to Eq. �E14�, we obtain an equation for �,

x��2�x� − x���x� − ���x� = sy +
a�

�
,

a� = � ln��0�s�q̄
2��2�

� � a � 0. �E17�

Comparing the above equation with Eq. �E14�, we conclude
that ��x�=�1�x�+�2�x�, where �1�x� is given by Eq. �E15�,
and �2 must be found from 2x�1��x��2��x�=x�1��y�+�1��x�.
The solution is �2= �ln x�1�� /2. As a result, accounting for
Eq. �E15�, we obtain the expression �66� for �0=exp�−��.

3. Minimum degree qm=1

To obtain the equation for ��z�=lims→0 T�s ,z /s�, let us
start with Eq. �E2�, which is valid as y→
. Let us replace y
in this equation with z /s simultaneously changing the inte-
gration variable, x=� /s. Then we have

z1/4

i	2�s
�

−i
+�

+i
+� d�

�3/4exp� �	z − 	��2

s
�T�s,

�

s
� = e−z�1�T�s,z/s�� .

�E18�

In the limit s→0 the saddle point approximation becomes
exact, with the saddle point condition simply �c=z. So, as-
suming that the limit �35� of the function T exists, we imme-
diately arrive at Eq. �36� for ��z�. The recursion relation
�41� is obtained in the same way by using the asymptotic
equation �E3�.

We can reasonably assume that at small s and large x,

T�s,x� = ��sx� + exp�− ��s,x�� , �E19�

where the last term is small. Substituting this into Eq. �E2�
and linearizing the right-hand side with respect to e−�, we
obtain

eyy1/4

2i	�
�

−i
+�

+i
+� dx

x3/4exp�− 2	xy + x − ��x��

= �1����sy��exp�− sy − ��y�� . �E20�

Repeating the steps leading to Eq. �E14�, we obtain

x��2�x� − x���x� = sx − ln �1����sx�� . �E21�

Treating the second term on the left-hand side as a perturba-
tion, we set �=�1+�2, ��2�� ��1�. The equations for �1 and
�2 are

x�1�
2�x� = sx − ln �1����sx��, 2�1��x��2��x� = �1��x� .

Then one can easily obtain
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�1�s,x� =
1
	s

g�sx� + C ,

g�z� = �
0

z

d�	1 −
ln �1�������

�
,

�2�s,x� =
1

4
ln�sg�2�sx�� , �E22�

where C�1. Finally, for ��x�=�1�x�+�2�x� we obtain for-
mula �72�.

The function g�z� has a singularity point at z=zs�0,
when the expression in the square root under the integral
becomes 0, i.e., when �1����zs��=ezs. Here zs is defined as
ts=��e−zs�, ts is the solution of Eq. �73� �see Fig. 4�. It is
obvious that g�zs�� ia is imaginary, because the expression
in the square root in Eq. �E22� is negative. The calculation of
a may be simplified if we replace the integration variable �
with =����. We use the definition of the function �, Eq.
�36�, from which �=ln��1�� /� follows, so d�
= ��1��� /�1��−1 /�d. We substitute these relations into the
integral for g�zs� in Eq. �E22�, and take into account that 
= tc=��0� at the lower limit of integration, �=0 while = ts

on the upper limit. This gives Eq. �75�. Note that z= ts is a
singularity point of the function ��z�. Since the derivative of
the reverse function z=ln��1��� /�� is zero, ��zs+��= ts

+O�	�� at small ���. Therefore, in Eq. �E22� ln �1����zs

+��� / �zs+��−1�	� and so g�zs+��= ia+O��5/4�.
The calculation of the asymptotics of the eigenfunction

�0�s ,x� is quite similar to that for qm=2. Let us represent
�0�s ,x�=exp�−��s ,x��. From Eq. �D9� we obtain the integral
equation for � which differs from Eq. �E16� only in that the
constant �1��0�=2��2� / q̄ should be replaced with the func-
tion �1����sy��. Proceeding further, we have

x��2�x� − x���x� − ���x� = sy − ln �1����sx�� .

This equation for � differs from Eq. �E17� only by the last
term on the right-hand side. So, as at qm=2, we have asymp-
totically �0�s ,x��x−1/2T�s ,x��x−1/2 exp�−��s ,x��, where
��s ,x� is given by Eq. �72�.

APPENDIX F: EIGENFUNCTION WITH MINIMUM
CHARACTERISTIC NUMBER AT s=0

Here we show that when s→0, the lowest eigenvalue �0
and the corresponding eigenfunction �0�x� of Eq. �27� are 1
and −T0��x�, respectively.

At s=0, Eq. �19� takes the form

T0�x� = e−x�1 + 	x�
0


 dy
	y

I1�2	xy�e−x�1�T0�y��� . �F1�

Let us differentiate both the parts of this relation with respect
to x. It is easy to check the identity

�

�x
�e−x−y	x

y
I1�2	xy�� = −

�

�y
�e−x−yI0�2	xy�� .

After differentiating and using this identity, we integrate by
parts on the right-hand side. The integrated term e−x on the
lower limit of integration, y=0, will be cancelled by the re-
sult of differentiating the e−x. Finally, we have

T0��x� = e−x�
0




dyI0�2	xy�e−y�1��T0�y��T0��y� . �F2�

Comparing this with Eq. �27� at s=0, we see that −T0��x� is
the �unnormalized� eigenfunction of this equation corre-
sponding to the eigenvalue �0=1. It is known from the
theory of linear integral equations �31� that the eigenfunction
corresponding to the maximum characteristic number can be
chosen to be real and positive within the interval of integra-
tion. One can see that −T0��x��0 at any x�0, and the cor-
responding eigenvalue �0=1 is indeed a maximal one.
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